Contribution from The Mallinckrodt Laboratory, Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138

Crystallographic Studies on Sulfur Dioxide Insertion Compounds. III. The Structure of an S-Sulfinate Derivative, $[\pi$ -C₅(CH₃)₅]Fe(CO)₂SO₂CH₂CH=CH(C₆H₅)¹

BY MELVYN R. CHURCHILL*2 AND JOHN WORMALD

Received July 31, 1970

 $[\pi$ -C₅(CH₃)₅]Fe(CO)₂SO₂CH₂CH=CH(C₆H₅), prepared by the reaction of $[\pi$ -C₅(CH₃)₅]Fe(CO)₂CH₂CH=CH(C₆H₅) and SO₂, crystallizes in the centrosymmetric monoclinic space group P_{21}/n (C_{2h} ⁵; no. 14) with a = 16.327 (14) Å, b = 12.891 (12) Å, c = 9.785 (8) Å, $\beta = 94.03$ (3)°, Z = 4, $\rho_{obsd} = 1.39 \pm 0.01$ g cm⁻³, and $\rho_{calcd} = 1.384$ g cm⁻³. Diffraction data to sin $\theta = 0.38$ (Mo K α radiation) were collected on a 0.01°-incrementing Supper-Pace "Buerger Automated Diffractometer." The structure was solved by Patterson, Fourier, and least-squares refinement techniques, the final discrepancy index being $R_F = 6.65\%$ for the 2135 independent nonzero reflections. The crystallographic analysis has confirmed that this molecule is formed by "insertion" of an SO₂ molecule into the iron-(σ -allyl) bond without rearrangement of the allyl fragment.

Introduction

A crystallographic study³ of cis-(CH₃SO₂)Mn(CO)₃-(bipy) (bipy = 2,2'-dipyridyl) confirms the accumulated chemical evidence⁴⁻¹⁰ that SO₂ "inserts" into a metal– alkyl or metal–aryl (M–R) bond to form an S-sulfinate (I). The reaction of SO₂ with σ -allyls is rather more

complicated. Following the observation that $(OC)_5$ -MnCH₂CH=CH₂ inserts SO₂ much faster than do the analogous methyl or benzyl derivatives,⁵ Wojcicki and coworkers have studied the products of SO₂ insertion into a number of manganese carbonyl complexes containing unsymmetrically substituted allyl groups.^{11,12} Thus $(OC)_5$ MnCH₂CH=CH(CH)₃ and $(OC)_5$ MnCH₂CH=C(CH₃)₂ each are found to undergo rearrangement upon insertion of SO₂, yielding the products $(OC)_5$ MnSO₂CH(CH₃)CH=CH₂ and $(OC)_5$ MnSO₂-C(CH₃)₂CH=CH₂, respectively. The suggested mechanism (eq 1) is compatible with the fact that Mn(CO)₅-CH₂CH=CHCl reacts with SO₂ to form Mn(CO)₅Cl and C₃H₄(SO₂)_x.¹² The complex $(OC)_5$ MnCH₂CH=

$$MCH_2CH = CR_2 + SO_2 \rightarrow$$

$$\begin{array}{cccc} M & -CH_2 & 0 \\ 0 & -S & -CH & - & M \\ 0 & CR_2 & 0 \\ \end{array} \end{array} \xrightarrow{CH} CH_2 CH_2 (1)$$

- (1) Part II: M. R. Churchill and J. Wormald, J. Amer. Chem. Soc., 93, 354 (1971).
 - (2) Fellow of the Alfred P. Sloan Foundation, 1968-1970.
 - (3) D. R. Swift and K. Knox, personal communication.
 - (4) J. P. Bibler and A. Wojcicki, J. Amer. Chem. Soc., 86, 5051 (1964).
 - (5) F. A. Hartman and A. Wojcicki, *ibid.*, 88, 844 (1966).
 - (6) J. P. Bibler and A. Wojcicki, *ibid.*, **88**, 4862 (1966).
 - (7) F. A. Hartman and A. Wojcicki, *Inorg. Chem.*, 7, 1504 (1968).
 (8) F. A. Hartman and A. Wojcicki, *Inorg. Chim. Acta*, 2, 351 (1968).
 - (9) P. J. Pollick, J. P. Bibler, and A. Wojcicki, J. Organometal. Chem., 16,
- 201 (1969).
- (10) M. Graziani, J. P. Bibler, R. M. Montesano, and A. Wojcicki, *ibid.*, **16**, 507 (1969).
- (11) F. A. Hartman, P. J. Pollick, R. L. Downs, and A. Wojcicki, J. Amer. Chem. Soc., 89, 2493 (1967).
 - (12) F. A. Hartman and A. Wojcicki, Inorg. Chim. Acta, 2, 289 (1968).

CH(C₆H₅), however, reacts with SO₂ to form (OC)₅-MnSO₂CH₂CH=CH(C₆H₅), with no rearrangement. Presumably the conjugation of the allyl double bond with the phenyl group prevents a mechanism such as (1), and the organic ligand behaves essentially as an alkyl group, with SO₂ insertion occurring by a mechanism such as (2) or (3). With π -C₅H₅Fe(CO)₂-

$$M(CO)R + SO_2 \longrightarrow M(COR)(SO_2) \longrightarrow M(CO)(SO_2R)$$
 (2)

$$M - R + SO_2 \longrightarrow \bigvee_{M - R}^{O} \longrightarrow M - S - R \quad (3)$$

CH₂CH=C(CH₃)₂, insertion of SO₂ leads to both π -C₅H₅Fe(CO)₂SO₂CH₂CH=C(CH₃)₂ and π -C₅H₅Fe(CO)₂-SO₂C(CH₃)₂CH=CH₂, with low temperatures favoring formation of the latter (rearranged) product.

We now report the results of an X-ray diffraction study on $[\pi$ -C₅(CH₃)₅]Fe(CO)₂SO₂CH₂CH=CH(C₆H₅) prepared from $[\pi$ -C₅(CH₃)₅]Fe(CO)₂CH₂CH=CH-(C₆H₅) and SO₂.¹³

Unit Cell and Space Group

A sample of the complex $[\pi$ -C₅(CH₃)₅]Fe(CO)₂SO₂-CH₂CH=CH(C₆H₅) was kindly supplied by Professor A. Wojcicki of The Ohio State University. Crystals suitable for an X-ray diffraction study were grown by slow evaporation of a *sym*-dichloroethane-methylcyclohexane solution; they are air and X-ray stable. Optical examination and a reciprocal lattice symmetry of 2/m ($C_{2\hbar}$) indicate that the crystals belong to the monoclinic system. Unit cell dimensions measured from high-angle reflections on precession photographs (Mo K α radiation, calibration with Pb(NO₃)₂) taken at 24 ± 2° are a = 16.327 (14) Å, b = 12.891 (12) Å, c = 9.875 (8) Å, and $\beta = 94.03$ (3)°. The unit cell volume is 2054 Å³.

A survey of hk0-hk1 Weissenberg photographs and h0l-h1l, 0kl-1kl precession photographs in conjunction with *c*-axis rotation and *a*- and *b*-axis cone-axis photographs revealed the systematic absences h0l for h + l = 2n + 1 and 0k0 for k = 2n + 1, compatible only

(13) A. Wojcicki, private communication.

with space group $P2_1/n$ [a nonstandard setting of $C_{2h}{}^5$; no. 14^{14} with equipoints $\pm (x, y, z)$, $\pm (1/_2 + x, 1/_2 - y, 1/_2 + z)$]. The observed density ($\rho_{obsd} = 1.39 \pm 0.01$ g cm⁻³ by flotation in aqueous zinc iodide solution) is consistent with $\rho_{oaled} = 1.384$ g cm⁻³ for M = 428.33 and Z = 4. No crystallographic symmetry is imposed upon the molecule.

Collection and Reduction of the X-Ray Diffraction Data

Two crystals were used in the course of data collection. Crystal I approximated to a regular parallelepiped of dimensions $0.70 \times 0.41 \times 0.23$ mm (referred to $11\overline{1}, \overline{1}11, 101$) and was mounted on its *b* axis; crystal II (0.51 \times 0.41 \times 0.19 mm, referred to $1\overline{1}1, 110$, $\overline{1}11$) was mounted on its *c* axis.

Intensity data were collected with Mo K α radiation (molybdenum X-radiation filtered through a 3.0-mil zirconium foil at the source) on a 0.01°-incrementing Supper-Pace "Buerger Automated Diffractometer." Details of the "stationary-background, w-scan, stationary-background" counting sequence have appeared previously.¹⁵ Experimental details specific to the present investigation include the following. (i) Generator power was 49 kV/19 mA. (ii) Angle scanned was $\omega =$ $[1.4 + 0.7/L]^{\circ.16}$ (iii) $d\omega/dt = 2.0^{\circ}/min.$ (iv) Initial and final background counts (B_1, B_2) were each measured for one-fourth the time for the ω scan, the count associated with the ω scan being C. (v) Within each zone, a carefully preselected check reflection was remeasured after every 20 reflections. (There were no deviations $\geq 2\%$ from the mean.)

Equiinclination Weissenberg geometry was used to collect data for quadrants hkl and $\bar{h}kl$ of the zones h0l-h13l from crystal I; this set of data is complete to sin $\theta = 0.38$ except for the few reflections in the range $0 < \theta \leq 4^{\circ}$ which lie behind the backstop. Data for quadrants hkl and $\bar{h}kl$ of zones hk0-hk2 were collected from crystal II for the purpose of correlation.

The integrated intensity of a reflection, I(hkl), is calculated by $I(hkl) = C(hkl) - 2.0[B_1(hkl) + B_2 \cdot (hkl)]$. The 3σ (maximum probable) error in I(hkl)based solely on counting statistics is given by $\delta(hkl) =$ $3.0[C(hkl) + 4\{B_1(hkl) + B_2(hkl)\}]^{1/3}$. Based on previous experience with the ω -scan technique, the following weighting scheme was used for the data: if $I(hkl) \ge 4900, \sigma(I) = 0.1(I)$; if $4900 > I(hkl) \ge \delta(hkl)$ $\sigma(I) = 7.0(I)^{1/3}$; if $\delta(hkl) > I(hkl)$, the reflection was rejected as not significantly above background.

Of 2757 reflections collected from crystal I, 467 were rejected; of 1088 reflections from crystal II, 233 were rejected. Intensities were corrected for Lorentz, polarization, and absorption effects;¹⁷ with $\mu = 8.57 \text{ cm}^{-1}$, transmission coefficients ranged from 0.759 to 0.856 for crystal I (volume 29.7 × 10⁻⁸ cm³) and from 0.706 to 0.759 for crystal II (volume 46.9 ×

- (15) M. R. Churchill and J. P. Fennessey, *Inorg. Chem.*, 7, 1123 (1968).
 (16) 1/L is the Lorentz factor.
- (17) Using the IBM 360 Fortran IV program IMBIBE (by J. Wormald).

 10^{-6} cm³). Equivalent reflections (*i.e.*, hk0, $\bar{h}k0$) within a zone were averaged and the 17 zones were merged to a common scale by a least-squares analysis of common reflections.¹⁸ The resulting 2135 independent, nonzero reflections were used in a Wilson plot¹⁹ which yielded the approximate absolute scale and an overall isotropic thermal parameter.

Elucidation and Refinement of the Structure

Unless otherwise stated all crystallographic routines were performed under the CRVRM system²⁰ using the Harvard University IBM 7094 computer.

Discrepancy indices referred to below are

$$R_F = \sum ||F_o| - |F_o|| / \sum |F_o|$$
$$R_{wF^2} = \sum w (|F_o|^2 - |F_o|^2)^2 / \sum w |F_o|^4$$

The positions of iron and sulfur atoms were obtained from a three-dimensional Patterson map. All carbon and oxygen atoms were located via a difference Fourier synthesis phased by the two "heavy" atoms $(R_F =$ 39.0%). Three cycles of full-matrix least-squares refinement²¹ of the scale factor along with positional and isotropic thermal parameters for all nonhydrogen atoms led to convergence at $R_F = 11.13\%$, $R_{wF^2} =$ 8.05%. A difference Fourier map now showed evidence of anisotropic motion of many atoms; no hydrogen atoms could be located from this map. Hydrogen atoms (excluding those of the methyl groups, whose positions are indeterminate) were now included in calculated positions²² with B = 4.0 Å². Keeping these parameters constant, three cycles of refinement of positional and anisotropic thermal parameters of nonhydrogen atoms led to convergence at $R_F = 7.24\%$, $R_{wF^2} = 4.33\%$. Hydrogen atom positions were now recalculated (using the up-dated carbon positions). No hydrogen atom had to be relocated by more than 0.05 Å. Because of the good quality of the crystals, three more cycles of refinement were performed, now including a secondary extinction factor (based on the model of Zachariasen²³). This resulted in convergence with $R_F = 6.65\%$, $R_{wF^2} = 3.36\%$, $(\Delta/\sigma)_{max} = 0.15$. The final value for the extinction coefficient (χ) was 4.91×10^{-6} where $F_{\text{caled}^2}(\text{cor}) = F_{\text{caled}^2}/(1 + \chi\beta F_{\text{caled}^2})$ and $\beta = (1 + \cos^4 2\theta) / [\sin 2\theta (1 + \cos^2 2\theta)].$

A final difference Fourier synthesis showed no features higher than $0.4 e^- \text{\AA}^{-3}$, and the structure was judged to be correct and complete. The standard deviation in an observation of unit weight was 1.68. A final structure factor calculation *omitting* hydrogens gave $R_F = 7.12\%$, $R_{wF^2} = 4.00\%$.

Hamilton R factor ratio tests^{24} confirm that (i)

(22) Using d(C-H) = 1.080 Å and assuming idealized geometry about the appropriate carbon atom.

(23) W. H. Zachariasen, Acta Crystallogr., 16, 1139 (1963).

(24) W. C. Hamilton, ibid., 18, 502 (1965).

^{(14) &}quot;International Tables for X-Ray Crystallography," Vol. 1, Kynoch Press, Birmingham, England, 1965, p 99.

⁽¹⁸⁾ A. D. Rae, Acta Crystallogr., 19, 683 (1965).

⁽¹⁹⁾ A. J. C. Wilson, Nature (London), 150, 152 (1942).

⁽²⁰⁾ CRYRM is an integrated sequence of crystallographic routines for the IBM 7094 computer, compiled under the direction of Professor R. E. Matsh at the California Institute of Technology.

⁽²¹⁾ The residual minimized was $\Sigma w (|F_0|^2 - |F_0|^2)^2$, where $w = [\sigma(F^2)]^{-2}$ and $\sigma(F^2)$ is derived from $\sigma(I)$ by adjustment for Lorentz, polarization, absorption, and scale factors.

TABLE I

Observed and Calculated Structure Factor Amplitudes (in Electrons \times 10.00) for $[\pi$ -C₅(CH₃)₅]Fe(CO)₂SO₂CH₂CH=CH(C₆H₅)

x L 2.5 F2 x 17 0 1 0.5 x 18 0.5 0.5 0.5 x 19 0.5 0.5 0.5 x 10 0.5 0.5 0				x 1 20 1			

anisotropic thermal parameter refinement and (ii) inclusion of nonmethyl hydrogen atoms each result in an improvement significant at (or beyond) the 95% confidence level. As complete omission of hydrogen atoms raises R_F to only 7.12% and their positions were in fact so slightly adjusted, the refinement of a secondary extinction factor²⁵ can also be accepted at the 95% confidence level. The marked improvement

in R_{wF^2} that results speaks for the reduction in discrepancies for intense, low-angle reflections.

Scattering factors for *neutral* iron, sulfur, oxygen, carbon, and hydrogen were used throughout the analyses.²⁶ The real part of the anomalous dispersion correction was applied by adding $\Delta f'$ to f for iron ($\Delta f' = +0.4 \text{ e}^-$) and sulfur ($\Delta f' = +0.1 \text{ e}^-$).

Observed and calculated structure factor amplitudes are collected in Table I. Final atomic coordinates are shown in Table II. Thermal parameters are given

⁽²⁵⁾ It should be remembered that the Zachariasen treatment of secondary extinction assumes that extinction effects within the crystal are isotropic. While this is probably not the case for crystals of low symmetry (such as the present, monoclinic, case), the approximation is certainly better than neglecting secondary extinction.

^{(26) &}quot;International Tables for X-Ray Crystallography," Vol. III, Kynoch Press, Birmingham, England, 1962, pp 202–207, 216.

TABLE II FINAL ATOMIC COORDINATES FOR $[\pi-C_6(CH_2)_6]Fe(CO)_2SO_2CH_2CH=CH(C_6H_5),$

	WII.	H LSD S	
Atom	x	У	z
Fe	0.56659(6)	0.31170(7)	0.69999(11)
S	0.68380(11)	0.23108(14)	0.75903(21)
O(1)	0.6945(3)	0.2148(4)	0.9074(6)
O(2)	0.6935(4)	0.1373(4)	0.6744(7)
O(3)	0.6219(5)	0.5088(5)	0.8172 (8)
O(4)	0.5967(4)	0.3439(5)	0.4135(7)
C(1)	0.7727(5)	0.3124(6)	0.7244(9)
C (2)	0.7807(5)	0.3316(6)	0.5779(9)
C(3)	0.7839(5)	0.4238(6)	0.5214(9)
C(4)	0.7893(5)	0.4465(6)	0.3766(9)
C(5)	0.7742(5)	0.3725(6)	0.2718(9)
C(6)	0.7772(6)	0.3971(7)	0,1390(10)
C(7)	0.7958(6)	0.4993 (8)	0.0971(10)
C(8)	0.8122(6)	0.5708(6)	0.1979(11)
C(9)	0.8080(5)	0.5473(6)	0.3350(10)
C(10)	0.5025(4)	0.1766(5)	0.7605(9)
C(11)	0.4743(4)	0.2072(5)	0.6254(9)
C(12)	0.4415(4)	0.3111(5)	0.6376(9)
C(13)	0.4503(4)	0.3435(6)	0.7725(8)
C(14)	0.4905(4)	0.2606(6)	0.8540(9)
C(15)	0.5317(5)	0.0692(5)	0.8023(11)
C(16)	0.4746(5)	0.1426(6)	0.4988(10)
C(17)	0.3962(5)	0.3679(6)	0.5176(10)
C(18)	0.4174(5)	0.4434(7)	0.8303 (11)
C(19)	0.5072(6)	0.2594(8)	1.0060(10)
C (20)	0.6020(5)	0.4319(6)	0.7692(9)
C(21)	0.5905(5)	0.3331(5)	0.5295(10)
H(1)	0.7701	0.3861	0.7750
H(2)	0.8302	0.2741	0.7660
H(3)	0.7841	0.2649	0.5117
H(4)	0.7824	0.4896	0.5895
H(5)	0.7592	0.2944	0.3010
H(6)	0.7650	0.3380	0.0619
H(7)	0.7983	0.5194	-0.0097
H(8)	0.8271	0.6490	0.1688
H(Q)	0 8202	0 6064	0 4121

^a Esd's (estimated standard deviations), shown in parentheses, are right-adjusted to the last digit of the preceding number. ^b Hydrogen atoms are in calculated positions.

Figure 1.—Molecular geometry and atomic vibration ellipsoids²⁷ for $[\pi$ -C₅(CH₃)₅]Fe(CO)₂SO₂CH₂CH=CH(C₆H₅).

in Table III; the associated atomic vibration ellipsoids are listed in Table IV and displayed pictorially²⁷ in Figure 1.

(27) Atomic vibration ellipsoids were drawn using otlips, an IBM 1620/ CALCOMP program by Dr. P. H. Bird.

The Molecular Structure

Interatomic distances with estimated standard deviations (esd's) are collected in Table V; bond angles (with esd's) are shown in Table VI. The labeling of atoms and the molecular stereochemistry are shown in Figures 1 and 2. The molecular structure corresponds to the case of SO_2 insertion *without* allylic rearrangement.

Figure 2.—The $[\pi$ -C₆(CH₈)₆]Fe(CO)₂SO₂CH₂CH=CH(C₆H₅) molecule, projected onto the plane of its cyclopentadienyl ring.

The formally d^6 Fe(II) ion achieves the expected noble gas configuration by the donation of six electrons from the π -pentamethylcyclopentadienyl ion, two electrons from each of the carbonyl ligands, and two electrons from the S-bonded sulfinate moiety. The iron atom may be regarded as pseudo-octahedrally coordinated since it is linked to three monodentate ligands and to a formally tridentate π -C₅(CH₃)₅ ligand. The monodentate ligands are disposed about the iron atom with a very regular geometry, the appropriate angles being S-Fe-C(20) = $93.3 (3)^{\circ}$, S-Fe-C(21) = 94.3 (3)°, and C(20)-Fe-C(21) = 97.9 (4)°. They also have pseudo-threefold symmetry relative to the π -pentamethylcyclopentadienyl ligand where the angles are Cp-Fe-S = 122.7 (3)°, Cp-Fe-C(20) = 123.0(4)°, and Cp-Fe-C(21) = 118.8 (4)° (Cp being the centroid of the five membered ring).

The ring carbon atoms of the π -pentamethylcyclopentadienyl system, i.e., C(10)-C(11)-C(12)-C(13)-C(14), have a root-mean-square deviation of only 0.010 Å from their least-squares plane (see Table VII). The iron atom lies 1.730 Å to one side of this plane; the carbon atoms of the methyl substituents each lie to the opposite side of the ring carbon atoms; *i.e.*, they are bent away from the iron atom by the following amounts: C(15), 0.191 Å; C(16), 0.025 Å; C(17), 0.140 Å; C(18), 0.136 Å; C(19), 0.075 Å. The different distortions presumably reflect steric interaction between adjacent methyl groups. Bond lengths within the cyclopentadienyl ring range from 1.382 (10) to 1.460 (10) Å, averaging 1.431 ± 0.030 Å. This agrees precisely with the C–C(π -cyclopentadienyl) bond length of 1.431 ± 0.005 Å determined from an electron diffraction study on ferrocene,²⁸ is close to our average value

(28) R. K. Bohn and A. Haaland, J. Organometal. Chem., 5, 470 (1966).

ANISOIROI	FIC THERMAL TAK	AMELERS FOR [%-C	5(C113)5]Te(CO)25O	2C112C11 - C11(C611)	5)
$10^{4}\beta_{I1}$	$10^{4}\beta_{22}$	10 ⁴ / <i>β</i> 33	$10^{4}\beta_{12}$	$10^{4}\beta_{13}$	104 <i>β</i> 23
21.5(0.5)	33.2(0.7)	87.8(1.6)	1.1(0.8)	-12.2(1.2)	-3.7(1.5)
22.1(0.8)	51.1(1.2)	81.9(2.6)	8.9(1.5)	-8.3(2.1)	13.5(2.9)
33(2)	82(4)	100 (8)	2(5)	-10(7)	68 (9)
43 (3)	58(4)	162(10)	33(5)	24(8)	-19(10)
70 (4)	54(4)	219(12)	-34(7)	7 (11)	-82(12)
42 (3)	89(5)	109 (9)	6 (6)	-9(8)	48(11)
22 (3)	80 (6)	106(12)	-15(7)	-15(9)	47(14)
25 (3)	73(3)	106 (12)	2(7)	14 (10)	-4(14)
23 (3)	64(5)	99 (12)	-19(7)	-5(9)	-17 (13)
23 (3)	55(5)	115(13)	-4(6)	13 (10)	7(13)
40 (4)	58(5)	90(12)	0 (8)	17 (10)	9 (13)
43 (4)	89(7)	115(14)	-3(9)	36(12)	-45(17)
45(4)	92(7)	106 (13)	29 (9)	41 (12)	30(17)
43 (4)	47(5)	158(16)	14(8)	27(13)	50(15)
31 (3)	49(5)	134(14)	-6(7)	6(11)	-6(13)
23 (3)	47(5)	135(13)	-10(6)	1 (10)	15(13)
22 (3)	39(4)	125(12)	-5(6)	-9(10)	-12(12)
17(3)	41(4)	129(12)	5(6)	-7(9)	0(12)
21 (3)	53(5)	110 (11)	7(6)	-7(9)	-22(12)
22 (3)	73(6)	108(12)	-8(7)	20 (9)	12(14)
42(4)	37(5)	217 (17)	0(7)	-19 (13)	88(14)
46 (4)	48(5)	150(13)	-11(7)	-19(12)	-67(13)
42(4)	52(5)	150(13)	21 (8)	-56(12)	-15(14)
40 (4)	84 (6)	167~(15)	46 (8)	-1(12)	-78(16)
47(4)	119 (8)	94(12)	-11(10)	18 (11)	40 (17)
40 (4)	50(5)	111 (12)	-18(7)	-7(11)	-15(13)
25 (3)	43(5)	102(12)	0 (6)	-41 (10)	13(13)
	$\begin{array}{c} 10^4\beta_{11} \\ 21.5 & (0.5) \\ 22.1 & (0.8) \\ 33 & (2) \\ 43 & (3) \\ 70 & (4) \\ 42 & (3) \\ 22 & (3) \\ 25 & (3) \\ 23 & (3) \\ 23 & (3) \\ 23 & (3) \\ 40 & (4) \\ 43 & (4) \\ 41 & (3) \\ 22 & (3) \\ 42 & (4) \\ 46 & (4) \\ 42 & (4) \\ 40 & (4) \\ 47 & (4) \\ 40 & (4) \\ 25 & (3) \end{array}$	10491110 $^{4}\beta_{21}$ 10 $^{4}\beta_{22}$ 21.5 (0.5)33.2 (0.7)22.1 (0.8)51.1 (1.2)33 (2)82 (4)43 (3)58 (4)70 (4)54 (4)42 (3)89 (5)22 (3)80 (6)25 (3)73 (3)23 (3)64 (5)23 (3)55 (5)40 (4)58 (5)43 (4)89 (7)45 (4)92 (7)43 (4)47 (5)31 (3)49 (5)22 (3)39 (4)17 (3)41 (4)21 (3)53 (5)46 (4)48 (5)42 (4)52 (5)40 (4)84 (6)47 (4)119 (8)40 (4)50 (5)25 (3)43 (5)	INVESTICT INEXAME FIRME FIRME FOR $[w] = C$ $10^4\beta_{11}$ $10^4\beta_{22}$ $10^4\beta_{23}$ $21.5(0.5)$ $33.2(0.7)$ $87.8(1.6)$ $22.1(0.8)$ $51.1(1.2)$ $81.9(2.6)$ $33(2)$ $82(4)$ $100(8)$ $43(3)$ $58(4)$ $162(10)$ $70(4)$ $54(4)$ $219(12)$ $42(3)$ $89(5)$ $109(9)$ $22(3)$ $80(6)$ $106(12)$ $25(3)$ $73(3)$ $106(12)$ $23(3)$ $64(5)$ $99(12)$ $23(3)$ $64(5)$ $99(12)$ $23(3)$ $55(5)$ $115(13)$ $40(4)$ $58(5)$ $90(12)$ $43(4)$ $89(7)$ $115(14)$ $45(4)$ $92(7)$ $106(13)$ $43(4)$ $47(5)$ $158(16)$ $31(3)$ $49(5)$ $134(14)$ $23(3)$ $47(5)$ $135(13)$ $22(3)$ $39(4)$ $125(12)$ $17(3)$ $41(4)$ $129(12)$ $21(3)$ $53(5)$ $110(11)$ $22(3)$ $73(6)$ $108(12)$ $42(4)$ $52(5)$ $150(13)$ $40(4)$ $84(6)$ $167(15)$ $47(4)$ $119(8)$ $94(12)$ $40(4)$ $50(5)$ $111(12)$ $25(3)$ $43(5)$ $102(12)$	Invision control of matching tables for $[m - C_3(CH13/6)]$ for $(CC0)_{25}(G)$ $10^4 \beta_{11}$ $10^4 \beta_{22}$ $10^4 \beta_{33}$ $10^4 \beta_{34}$ $21.5(0.5)$ $33.2(0.7)$ $87.8(1.6)$ $1.1(0.8)$ $22.1(0.8)$ $51.1(1.2)$ $81.9(2.6)$ $8.9(1.5)$ $33(2)$ $82(4)$ $100(8)$ $2(5)$ $43(3)$ $58(4)$ $162(10)$ $33(5)$ $70(4)$ $54(4)$ $219(12)$ $-34(7)$ $42(3)$ $89(5)$ $109(9)$ $6(6)$ $22(3)$ $80(6)$ $106(12)$ $-15(7)$ $25(3)$ $73(3)$ $106(12)$ $2(7)$ $23(3)$ $64(5)$ $99(12)$ $-19(7)$ $23(3)$ $64(5)$ $99(12)$ $-19(7)$ $23(3)$ $55(5)$ $115(13)$ $-4(6)$ $40(4)$ $58(5)$ $90(12)$ $0(8)$ $43(4)$ $89(7)$ $115(14)$ $-3(9)$ $45(4)$ $92(7)$ $106(13)$ $29(9)$ $43(4)$ $47(5)$ $158(16)$ $14(8)$ $31(3)$ $49(5)$ $134(14)$ $-6(7)$ $23(3)$ $47(5)$ $135(13)$ $-10(6)$ $22(3)$ $39(4)$ $125(12)$ $-5(6)$ $17(3)$ $41(4)$ $129(12)$ $5(6)$ $21(3)$ $53(5)$ $110(11)$ $7(6)$ $22(3)$ $73(6)$ $108(12)$ $-8(7)$ $42(4)$ $37(5)$ $217(17)$ $0(7)$ $46(4)$ $48(5)$ $150(13)$ $-11(7)$ $42(4)$ $52(5)$ $150(13)$ $-11(7)$ 4	Integration of the contrast of th

TABLE III ANISOTROPIC THERMAL PARAMETERS FOR $[\pi$ -C₅(CH₃)₅]Fe(CO)₂SO₂CH₂CH==CH(C₆H₅)^a

^a The anisotropic thermal parameter (T) is defined as $T = \exp[-\beta_{11}h^2 - \beta_{22}k^2 - \beta_{33}l^2 - \beta_{12}hk - \beta_{13}hl - \beta_{23}kl]$.

TABLE IV

Thermal Vibration Ellipsoids for Atoms in $[\pi$ -C₅(CH₃)₅]Fe(CO)₂SO₂CH₂CH=CH(C₆H₅)^{*a*,*b*}

Atom	$B_{ m max}$, Å 2	$B_{ m med}$, Å ²	B_{\min} , Å ²
Fe	3.66	2.20	2.06
s	3.62	3.30	2.01
O(1)	6.58	3.81	2.52
O(2)	6.26	5.65	2.64
O(3)	9.13	7.82	2.50
O(4)	6.56	4.81	3.30
C(1)	6.28	3.39	2.14
C(2)	4.89	4.04	2.58
C(3)	4.63	3.88	2.02
C(4)	4.45	3.64	2.38
C(5)	4.33	3.95	3.24
C(6)	6.60	4.79	3,31
C(7)	7.19	4.36	3.30
C(8)	6.66	4.44	2.61
C(9)	5.12	3.50	3.03
C(10)	5.27	3.26	2.25
C(11)	4.93	2.73	2.13
C(12)	5.02	2.81	1.76
C(13)	4.67	3.23	2.09
C(14)	4,95	4,13	2.11
C(15)	9.33	4.34	1.68
C(16)	6.87	4.89	2.12
C(17)	7.66	3.60	2.66
C(18)	8.69	4.97	2,56
C(19)	8.19	4.96	3.25
C(20)	4.85	4,30	2.70
C(21)	5.08	2.85	1.68

^{*o*} The magnitudes of the major, median, and minor axes of the atomic vibration ellipsoids defined in terms of the isotropic thermal parameter, *B*. This is related to the rms displacement by $(\overline{U}^2)^{1/2} = [B/8\pi^2]^{1/2}$. ^{*b*} The 68% probability envelopes are depicted in Figure 1.

of 1.436 Å for the C-C distance in bis(fulvalene)diiron,²⁹ and is rather longer than the mean X-ray value of 1.419 Å from studies on unsubstituted π -cyclopentadienyl derivatives.⁸⁰ Thus, the central C_5 ring of the π -pentamethylcyclopentadienyl system is probably more rigidly held than the corresponding ring in a π -C_bH_b system, since no significant librational contraction of the C-C bond is observed. Iron-carbon distances range from 2.090 (9) to 2.137 (8) Å averaging 2.115 ± 0.016 Å. This mean value appears to be rather greater than that observed in nonmethylated π -cyclopentadienyliron-carbonyl species, viz., 2.089 Å in $[\pi$ -C₅H₅Fe(CO)₂]₂C₄H₄,³¹ 2.093 Å in (azulene)Fe₂(CO)₅,³² and 2.094 Å in π -C₅H₅Fe(CO)₂C₄H₅- SO_{2} .¹ However, since the present complex is the first $[\pi$ -C₅(CH₃)₅] complex of iron to be examined crystallographically, we feel that further results are necessary before any firm conclusions on this point can be reached.

Bond distances from the ring carbons to the methyl carbons range from 1.492 (12) to 1.530 (11) Å, averaging 1.509 ± 0.015 Å. This value is in excellent agreement with the recognized C(sp²)-C(sp³) single-bond distance of 1.510 ± 0.005 Å.³³

The terminal carbonyl groups are quite normal with a mean iron-carbon distance of 1.766 ± 0.007 Å and a mean carbon-oxygen distance of 1.145 ± 0.014 Å.

(29) M. R. Churchill and J. Wormald, Inorg. Chem., 8, 1970 (1969).

(31) M. R. Churchill and J. Wormald, Inorg. Chem., 8, 1936 (1969).

(33) Che m. Soc., Spec. Publ., No. 18, S10s-22s (1965).

 ⁽³⁰⁾ P. J. Wheatley in "Perspectives in Structural Chemistry," Vol. 1,
 J. D. Dunitz and J. A. Ibers, Ed., Wiley, New York, N. Y., 1967, p. 9.
 (21) M. D. Chemistrill and J. W. W. Y. M. S. 1969, (1969)

⁽³²⁾ M. R. Churchill, *ibid.*, **6**, 190 (1967).

	TAE	BLE V	
	INTERATOM	IC DISTANCES	
(WITH)	ESTIMATED ST	ANDARD DEVIATIO	NS^a)
FOR THE $[\pi - C_5(CH$	(CO)2SO	$D_2CH_2CH = CH(C_6)$	H ₅) MOLECULE
Atoms	Dist, Å	Atoms	Dist, Å
(a) D	istances Invo	lving the Sulfur At	tom
Fe-S	2.218(2)	S-O(1)	1.465(5)
S-C(1)	1.840(8)	S-O (2)	1.480(6)
		Av	1.473(10)
(b)) Iron– $[\pi-C_5]$	$(CH_3)_5$] Distances	
FeC(10)	2.137(8)	$Fe \cdots C(15)$	3.344 (9)
FeC(11)	2.112(8)	$Fe \cdots C(16)$	3.236 (9)
Fe-C(12)	2.090(8)	$Fe \cdots C(17)$	3.279(9)
Fe-C(13)	2.113(7)	$Fe \cdots C(18)$	3.297 (9)
Fe-C(14)	2.124(8)	$Fe \cdots C(19)$	3.281(9)
Av	2.115(16)	Av	$3.287 (-)^{b}$
(c) Di	istances Invol	ving Carbonyl Lig	ands
Fe - C (20)	1.771(8)	C(20)-O(3)	1.135(10)
Fe-C(21)	1.761(8)	C(21)-O(4)	1.154(10)
Av	1.766(7)	Av	1.145(14)
(d) I	Distances with	in Phenylallyl Mo	iety
C(1)-C(2)	1.469(11)	C(4) - C(5)	1,409(11)
C(2) - C(3)	1.312(11)	C(5)-C(6)	1.341(12)
C(3) - C(4)	1.456(11)	C(6) - C(7)	1.418(13)
		C(7)-C(8)	1.363(13)
		C(8)-C(9)	1.381(12)
		C(9) - C(4)	1,401(11)
		\mathbf{Av}	1.386 (29)
(e) D	istances withi	in $[\pi-C_5(CH_3)_5]$ Lig	gand
C(10)-C(11)	1.424(10)	C(10)-C(15)	1.510(11)

C(11)-C(12)	1.449(10)	C(11)-C(16)	1.493(11)
C(12) - C(13)	1.382(10)	C(12)-C(17)	1.530(11)
C(13)-C(14)	1.460(10)	C(13)-C(18)	1.519(12)
C(14)-C(10)	1.439(10)	C(14)-C(19)	1.492(12)
Av	1.431(30)	Av	1.509(16)

 a Esd's for individual distances are obtained from the leastsquares refinement process *via* the matrix inverse to the normal equation matrix. Esd's for average bond lengths were calculated from the equation

$$\sigma^{2} = \left\{ \left[\sum_{i=1}^{i=N} (\chi_{i} - \bar{\chi})^{2} \right] / (N-1) \right\}$$

where χ_i is the *i*th bond length, and $\overline{\chi}$ is the mean of the N equivalent bond lengths. ^b The above distances are not expected to be equivalent, since there appears to be steric repulsion between adjacent methyl groups.

The iron-sulfur distance of 2.218 (2) Å is significantly shorter than the sum of the appropriate covalent radii $(r(Fe) = 1.34 Å^{34} \text{ and } r(S) = 1.04 Å^{35})$, suggesting some double-bond character is this linkage. The sulfur atom is tetrahedrally coordinated, angles from the iron atom being very similar [Fe–S–O(1) = 111.4 (2)°, Fe–S–O(2) = 111.1 (3)°, Fe–S–C(1) = 111.2 (3)°] whereas the remaining angles are C(1)–S–O(1) = $102.9 (3)^\circ$, C(1)–S–O(2) = $104.2 (4)^\circ$, and O(1)–S–O-(2) = $115.3 (3)^\circ$. This last value is seen to be consistent with the Gillespie–Nyholm rules³⁶ concerning bond angles, since it separates two sulfur–oxygen double bonds, S—O(1) = 1.465 (5) Å and S—O(2) = 1.480

TABLE VI					
ANGLES WITHIN THE					

*	
$[\pi - C_{\ell}(CH_{\ell})_{\ell}] F_{\ell}(CO)_{\ell} SO_{\ell} CH_{\ell} CH_{\ell} CH_{\ell}(C_{\ell}H_{\ell})$	
MOT FOULE	

	MOLECI		
Atoms	Angle, deg	Atoms	Angle, deg
(a)	Angles aroun	d Iron Atom ^a	
S-Fe-C (20)	93.3(3)	Cp-Fe-S	122.7(3)
S-Fe-C(21)	94.3(3)	Cp-Fe-C(20)	123.0(4)
C(20)-Fe-C(21)	97.9(4)	Cp-Fe-C(21)	118.8(4)
(b)	Angles aroun	d Sulfur Atom	
Fe-S-O(1)	111.4(2)	C(1)-S-O(1)	102.9(3)
Fe-S-O(2)	111.1(2)	C(1)-S-O(2)	104.2(4)
Fe-S-C(1)	111.2(3)	O(1)-S-O(2)	115.3(3)
(c) An	gles within Pl	henylallyl Moiety	
S-C(1)-C(2)	113.6(6)	C(4)-C(5)-C(6)	121.9(8)
C(1)-C(2)-C(3)	124.9(8)	C(5)-C(6)-C(7)	121.5(9)
C(2)-C(3)-C(4)	126.8(8)	C(6)-C(7)-C(8)	117.0(9)
C(3)-C(4)-C(5)	123.5(7)	C(7)-C(8)-C(9)	122.3(9)
C(3)-C(4)-C(9)	119.9(7)	C(8)-C(9)-C(4)	120.8(8)
		C(9)-C(4)-C(5)	119.9(9)
(d) Angles Subt	ended at Fe b	y the Five-Membere	d Ring
C(10)-Fe- $C(11)$	39.2(3)	C(13)-Fe- $C(14)$	40.3(3)
C(11)-Fe-C(12)	40.4(3)	C(14)-Fe- $C(10)$	39.5(3)
C(12)-Fe- $C(13)$	38.4 (3)		
(e) Interna	l Angles of th	e $[\pi$ -C ₅ (CH ₃) ₅] Ligar	ıd
C(14)-C(10)-C(11)	109.4(7)	C(12)-C(13)-C(14)	108.2(7)
C(10)-C(11)-C(12)	106.1(6)	C(13)-C(14)-C(10)	106.2(7)
C(11)-C(12)-C(13)	110.1(6)	с. С. С. С	•
(f) Externa	al angles of th	e [<i>π</i> -C ₅ (CH ₃) ₅] Ligar	ıd
C(11)-C(10)-C(15)	125.5(7)	C(13)-C(12)-C(17)	126.9(7)
C(14)-C(10)-C(15)	124.9(7)	C(12)-C(13)-C(18)	126.6(7)
		دمينية دمينية ديينة	

C(14)-C(10)-C(15)	124.9(7)	C(12)-C(13)-C(18)	126.6 (7
C(10) - C(11) - C(16)	126.6(7)	C(14) - C(13) - C(18)	125 0 (7)
C(10) = C(11) = C(10)	120.0(7)	C(12) - C(10) - C(10)	106 5 (7)
C(12) - C(11) - C(10)	127.3(7)	C(13) = C(14) = C(19)	120.0(7)
C(11)-C(12)-C(17)	122.7(7)	C(10)-C(14)-C(19)	127.0(7)

^a "Cp" represents the centroid of the cyclopentadienyl ring.

	TABLI	e VII	
Importan $[\pi-C_5(CH_3)_5]F$	NT LEAST-SQUAR e(CO)2SO2CH2C	RES PLANES WIT CH=CH(C ₆ H ₅)	HIN THE MOLECULE ^{a,b}
Atom	Dev, Å	Atom	Dev, Å
	(a) π -C ₅ (C	H₃)₅ Group	
-0.91262	X = 0.3767 Y +	0.1584Z + 6.7	051 = 0
C(10)*	0.014	C(15)	0.191
C(11)*	-0.010	C(16)	0.025
C(12)*	0.002	C(17)	0.140
C(13)*	0.007	C(18)	0.136
C(14)*	-0.012	C(19)	0.075
Fe	-1.730		
	(b) The P	henyl Ring	
0.9700X	-0.2376Y + 0	0.0495 <i>Z</i> - 11.0	666 = 0
C(4)*	-0.002	C(3)	-0.044
C(5)*	0.004	C (2)	0.176
C(6)*	0.001	C(1)	0.082
C(7)*	-0.009		
C(8)*	0.012		
C(9)*	-0.007		
ª Planes are de	fined in Cartes	ian coordinates	(X, Y, Z) wh

^a Planes are defined in Cartesian coordinates (X, Y, Z) which are related to the monoclinic fractional cell coordinates (x, y, z)by the transformations $X = xa + zc \cos \beta$, Y = yb, and $Z = zc \sin \beta$. ^b Planes are calculated using unit weights for all atoms marked with an asterisk.

⁽³⁴⁾ This is taken specifically from studies on π -CsHsFe(CO)₂R molecules: see M. R. Churchill, *Perspect. Struct. Chem.*, **3**, 157 (1970).

⁽³⁵⁾ L. Pauling, "The Nature of the Chemical Bond," 3rd ed, Cornell University Press, Ithaca, N. Y., 1960, p 224.

⁽³⁶⁾ R. J. Gillespie and R. S. Nyholm, Quart. Rev., Chem. Soc., 339 (1957), especially pp 371-372.

Figure 3.—Packing of $[\pi$ -C₅(CH₃)₅]Fe(CO)₂SO₂CH₂CH=CH-(C₆H₅) molecules within the unit cell, viewed down b. The dashed lines represent the half-periods in the unit cell.

(6) Å. These distances are closely similar to the S=O bond length of 1.480 (8) Å in π -C₅H₅Fe(CO)₂-C₄H₅SO₂.^{1.37} The present sulfur–sp³ carbon bond, S–C(1), is 1.840 (8) Å long; this is consistent with the sulfur–sp² carbon distance of 1.781 (9) Å found in π -C₅H₅Fe(CO)₂C₄H₅SO₂,^{1.37} since there is a difference of 0.03–0.04 Å in the covalent radii of sp²- and sp³-hybridized carbon atoms.

As may be seen from Tables V–VII, distances within the phenylallyl moiety are in keeping with the structure as illustrated in Figures 1 and 2.

(37) M. R. Churchill, J. Wormald, D. A. Ross, J. E. Thomasson, and A. Wojcicki, J. Amer. Chem. Soc., 92, 1795 (1970).

TABLE VIII INTERMOLECULAR CONTACTS TO 3.5 Å^a

	Dist,			Dist,				
Atoms	Å	Trans ^b	Atoms	Å	Trans ^b			
$O(1) \cdots H(6)$	2.42	Ι	$C(16) \cdots H(2)$	3.34	II			
$H(1) \cdots H(7)$	2.72	Ι	$S \cdots H(6)$	3.43	Ι			
$H(1)\cdots H(6)$	2.87	I	$C(17) \cdots H(6)$	3.46	III			
$C(17) \cdots H(2)$	3.20	II	$O(1) \cdots C(6)$	3.47	II			
$O(3) \cdots H(7)$	3.23	Ι	$H(1) \cdots C(7)$	3.48	I			
$H(2) \cdots H(6)$	3.25	I	$C(11)\cdots H(6)$	3.49	III			
$C(1) \cdot \cdot \cdot H(6)$	3.31	Ι	$C(11) \cdots C(6)$	3.50	III			

^a Note that hydrogen atoms belonging to methyl groups of the π -C₅(CH₃)₅ ligand have not been located and are not included in these calculations. ^b The translations are as follows: (I) x, y, 1 + z; (II) $-\frac{1}{2} + x$, $\frac{1}{2} - y$, $-\frac{1}{2} + z$; (III) $-\frac{1}{2} + x$, $\frac{1}{2} - y$, $-\frac{1}{2} + z$; (III) $-\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$.

Crystal Packing

The packing of molecules in the crystal is shown in Figure 3; intermolecular contacts are collected in Table VIII. The shortest contact is $O(1)\cdots H(6)$ [x, y, 1 + z] = 2.42 Å. This and all other contacts are greater than the sum of the appropriate van der Waals radii.

Acknowledgments.—We thank Professor A. Wojcicki for supplying the sample. This work has been generously supported by the National Science Foundation (Grant GP-8077). J. W. acknowledges, with gratitude, the receipt of a Graduate National Fellowship from Harvard University for 1967–1970.

Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60201

The Bonding of Molecular Nitrogen. III. The Crystal and Molecular Structure of Chlorodinitrogentetrakis(dimethylphenylphosphine)rhenium(I)

BY BETTY R. DAVIS AND JAMES A. IBERS*

Received July 13, 1970

The crystal and molecular structure of the molecular nitrogen complex chlorodinitrogentetrakis(dimethylphenylphosphine)rhenium(I), ReCl(N₂)(P(CH₈)₂C₆H₆)₄, has been determined from three-dimensional X-ray data collected by counter techniques. The central rhenium atom is octahedrally coordinated to four phosphorus atoms, to the chlorine atom, and to a nitrogen atom of the molecular nitrogen group. The chlorine and nitrogen atoms are *trans*. The Re–Cl bond distance is 2.521 (4) Å, the Re–N bond distance is 1.97 (2) Å, and the four Re–P bond distances have a mean value of 2.422 (10) Å. The molecular nitrogen group is linear with an Re–N–N bond angle of 177 (1)° and a Cl–Re–N bond angle of 175.6 (4)°. Owing to partial disorder between the chlorine atom and the molecular nitrogen entity, a precise determination of the N–N distance has not been possible. Crystal data are as follows: triclinic, space group C_i^{1} -PI; a = 12.730 (6) Å, b = 12.771 (6) Å, c = 11.523 (6) Å, $\alpha = 103.25$ (3)°, $\beta = 103.96$ (2)°, $\gamma = 95.37$ (2)° (temperature 22°), Z = 2; $d_{obsd} = 1.57$ (3) g/cm³, $d_{caled} = 1.53$ g/cm³. The structure was refined using 1968 independent reflections for which $F^2 > 3\sigma(F^2)$ and the refinement converged to a conventional *R* factor (on *F*) of 3.7%.

Introduction

In the previously reported structures of transition metal complexes which contain molecular nitrogen as a coordinating ligand, $CoH(N_2)(P(C_6H_5)_3)_3$, $Ru(N_2)-(NH_3)_5^{2+}$, and $[Ru(N_3)(N_2)(NH_2CH_2CH_2NH_2)_2][PF_6]$, it has been shown that molecular nitrogen bonds in a manner similar to the isoelectronic species carbon mon-

oxide.¹⁻³ In continuing our studies and collaboration with the Unit of Nitrogen Fixation at the University of Sussex, Brighton, England, to determine factors con-

- (1) B. R. Davis, N. C. Payne, and J. A. Ibers, Inorg. Chem., 8, 2719 (1969).
- (2) F. Bottomley and S. C. Nyburg, Acta Crystallogr., Sect. B, 24, 1289 (1968).
- (3) B. R. Davis and J. A. Ibers, Inorg. Chem., 9, 2768 (1970).